Nuestro programa ofrece la posibilidad de profundizar y actualizar los conocimientos en estas áreas, utilizando la más avanzada tecnología educativa. Proporciona una visión integral delMachine Learning y la Inteligencia Artificial, al tiempo que se enfoca en los principios de aprendizaje supervisado y no supervisado, proporcionando una actualización en algoritmos avanzados, redes neuronales, y modelos de datos. Este curso capacita a sus participantes con todas las habilidades necesarias para desarrollar una exitosa labor profesional en este apasionante campo.
Solicitad más información del Curso de Nutrición bariátrica
ISEIE tiene como objetivo promover la educación de calidad, la investigación de alto nivel y los estudios de excelencia en todo el mundo.
La titulación que reciben nuestros estudiantes son reconocidas en las empresas más prestigiosas.
ISEIE cuenta con una trayectoria formativa basada en años de experiencia y preparación de profesionales cualificados.
Alto porcentaje de aquellos que han estudiado un MBA han incrementado su salario
Según estudios, los perfiles más buscados son los que cuentan con formación académica superior.
Nuestro sistema educativo le permite compatibilizar de un modo práctico y sencillo los estudios con su vida personal y profesional.
Nuestro plan interno de calidad del instituto persigue diversos objetivos, como el aumento de la satisfacción de los estudiantes, el cumplimiento de los objetivos de calidad establecidos, el desarrollo de una cultura de calidad, el reforzamiento de la relación entre el personal y la universidad, y el mejoramiento continuo de los procesos.
Para el diseño del Plan de estudios de este Curso de Machine Learning e Inteligencia Artificial de ISEIE Argentina, se han seguido las directrices de un equipo docente especializado, encargado de seleccionar cuidadosamente la información con la que se ha estructurado el temario.
De este modo, los profesionales que accedan al programa encontrarán contenidos innovadores y exhaustivos, alineados con el uso de tecnologías avanzadas y diseñados para abordar las necesidades y desafíos actuales. El objetivo es integrar conocimientos académicos y habilidades técnicas en un entorno global competitivo.
Todo ello a través de material de estudio presentado en un cómodo y accesible formato 100% online. El empleo de la metodología Relearning en el desarrollo de este programa permite reforzar y enriquecer los conocimientos, asegurando que perduren en el tiempo gracias a una repetición estratégica de los contenidos.1.1 Conceptos Claves del Machine Learning (ML)
1.2 Procesamiento y Preparación de Datos en ML
1.3 Modelos y Algoritmos de Machine Learning
1.4 Implementación de un Modelo de Machine Learning
1.5 Aplicaciones Reales y Tendencias en IA y ML
1.6 Historia y evolución del aprendizaje automático
1.7 Principios básicos de Machine Learning
1.8 Aplicaciones y casos de uso
2.1 Fundamentos de Python para Machine Learning
2.2 Introducción a las Librerías de Machine Learning
2.3 Preprocesamiento y Limpieza de Datos
2.4 Implementación de Modelos de Machine Learning
2.5 Optimización y Ajuste de Modelos
2.6 Despliegue de Modelos y Aplicaciones en Producción
2.7 Introducción a Python y sus bibliotecas
2.8 Uso de NumPy, Pandas y Matplotlib
2.9 Estructuración de datos para algoritmos
3.1 Introducción al Aprendizaje Supervisado
3.2 Preparación y Manipulación de Datos
3.3 Modelos de Regresión en Aprendizaje Supervisado
3.4 Modelos de Clasificación en Aprendizaje Supervisado
3.5 Árboles de Decisión y Ensambles
3.6 Optimización y Validación de Modelos
3.7 Regresión lineal y logística
3. 8 Clasificación con árboles de decisión y SVM
3.9 Implementación práctica en Python
4.1 Introducción al Aprendizaje No Supervisado
4.2 Métodos de Clustering
4.3 Reducción de Dimensionalidad
4.4 Modelos de Aprendizaje No Supervisado para Datos Estructurados
4.5 Modelos Generativos y Representaciones Latentes
4.6 Aplicaciones Prácticas del Aprendizaje No Supervisado
4.7 Clustering y reducción de dimensionalidad
4.8 Algoritmos K-Means y PCA
4.9 Análisis de patrones y segmentación de datos
5.1 Fundamentos de Redes Neuronales
5.2 Arquitecturas de Redes Neuronales
5.3 Entrenamiento y Optimización de Redes Neuronales
5.4 Deep Learning con Frameworks Populares
5.5 Aplicaciones Avanzadas de Deep Learning
5.6 Redes Neuronales en Producción y Escalabilidad
5.7 Implementación en la nube y edge computing
5.8 Introducción a las redes neuronales
5.9 Construcción de modelos en TensorFlow y Keras
5.10 Casos prácticos con deep learning.
6.1 Introducción al Preprocesamiento de Datos
6.2 Limpieza y Transformación de Datos
6.3 Codificación y Representación de Datos
6.4 Manejo de Datos Desequilibrados
6.5 Preparación de Datos para Modelado
6.6 Almacenamiento y Carga de Datos en Machine Learning
6.7 Limpieza, normalización y transformación de datos
6.8 Métodos para trabajar con datos faltantes
6.9 Creación de pipelines de datos
7.1 Modelos Ensamblados y Métodos de Votación
7.2 Máquinas de Soporte Vectorial (SVM)
7.3 Redes Neuronales Avanzadas y Deep Learning
7.4 Modelos Probabilísticos y Bayesianos
7.5 Optimización de Modelos y Ajuste de Hiperparámetros
7.6 Modelos de Aprendizaje por Refuerzo
7.7 Boosting (XGBoost, LightGBM)
7.8 Ensembles y Random Forests
7.9 Evaluación de modelos avanzados
8.1 Fundamentos del Aprendizaje por Reforzamiento
8.2 Procesos de Decisión de Markov (MDP)
8.3 Métodos Basados en Políticas y en Valores
8.4 Q-Learning y Deep Q-Networks (DQN)
8.5 Aprendizaje por Reforzamiento Profundo (Deep Reinforcement Learning)
8.6 Aplicaciones y Desafíos del Aprendizaje por Reforzamiento
8.7 Fundamentos de aprendizaje por reforzamiento
8.8 Implementación en entornos simulados
8.9 Aplicaciones industriales
9.1 Fundamentos de la Ética en Inteligencia Artificial
9.2 Sesgos y Discriminación en los Modelos de IA
9.3 Privacidad y Protección de Datos en IA
9.4 IA Explicable y Transparencia en los Modelos
9.5 Responsabilidad y Regulación en Inteligencia Artificial
9.6 Impacto Social y Futuro de la Inteligencia Artificial
9.7 Sesgos en datos y modelos
9.8 Impactos sociales y éticos de la IA
9.9 Regulaciones internacionales
10.1 Ciclo de Vida de un Proyecto de Machine Learning
10.2 Recolección y Preparación de Datos
10.3 Selección y Entrenamiento de Modelos
10.4 Despliegue y Producción de Modelos ML
10.5 Automatización y MLOps
10.6 Casos de Éxito y Mejores Prácticas
10.7 Gestión de proyectos de IA
10.8 Creación de modelos productivos
10.9 Evaluación y documentación de proyectos
11.1 Introducción a la Visualización de Datos en Machine Learning
11.2 Librerías de Visualización en Python
11.3 Exploración y Análisis Visual de Datos
11.4 Visualización de Modelos y Resultados de Machine Learning
11.5 Generación de Reportes Automáticos
11.6 Dashboards y Presentación de Datos para Toma de Decisiones
11.7 Creación de dashboards interactivos.
11.8 Herramientas como Tableau y Seaborn.
11.9 Comunicación de resultados.
Nota: El contenido del programa académico puede estar sometido a ligeras modificaciones, en
función de las actualizaciones o de las mejoras efectuadas.
Al concluir la especialización, los participantes serán galardonados con una titulación oficial otorgada por ISEIE Innovation School. Esta titulación se encuentra respaldada por una certificación que equivale a 4 créditos ECTS
(European Credit Transfer and Accumulation System) y representa un total de 100 horas de dedicación al estudio.
Esta titulación de ISEIE no solo enriquecerá su imagen y credibilidad ante potenciales clientes, sino que reforzará significativamente su perfil profesional en el ámbito laboral. Al presentar esta certificación, podrá demostrar de manera concreta
y verificable su nivel de conocimiento y competencia en el área temática del curso.
Esto resultará en un aumento de su empleabilidad, al hacerle destacar entre otros candidatos y resaltar su compromiso con la mejora continua y el desarrollo profesional.
Llena el siguiente formulario de ISEIE para descargar el temario del programa académico y recibir toda la información en tu correo electrónico.
Descubre todas las preguntas más frecuentes del Curso de Machine Learning e inteligencia artificial de ISEIE, y sus respuestas, de no encontrar una solución a tus dudas te invitamos a contactarnos, estaremos felices de brindarte más información.
El curso puede completarse en 4 semanas, dedicando entre 4 y 6 horas por semana.
No, el curso está diseñado para principiantes y avanzados por igual.
Recibirás un certificado oficial de ISEIE Colombia avalando tus conocimientos.
Sí, el contenido es accesible desde computadoras, tablets y smartphones.
Sí, tendrás acceso ilimitado al contenido del curso para revisarlo cuando lo necesites.
Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloque laudantium totam rem aperiam, eaque ipsa quae.
Suscríbete
Suscríbete a Nuestro boletín y recibe información sobre nuestras formaciones.
[sibwp_form id=3]